Portfolio A Brief Introduction About Myself

By Chun-Wei Liu

cl3762@columbia.edu Web Version

TRANSCENDING DISCIPLINES, TRANSFORMING LIVES

Chun-Wei Liu

- Columbia University MS in Applied Physics (2022)
- Research Assistant , Physics Dept. Will Lab, Prof. Sebastian Will
 - Strontium Atomic Tweezer Array [DAMOP2022]

National Cheng Kung University

BS in Civil Engineering (2020) * Most of my time at Physics Dept.

- Research Assistant , Physics Dept. Matterwave Lab, Prof. Pei-Chen Kuan
 - Quantum Walks
- Research Assistant, Civil Engineering Dept. Al Material Lab, Prof. Yun-Che Wang
 - *Machine Learning in Metamaterial Design.* [APCOM2019][CTAM44][MLDT2021][USNCCM16]
 - Computational Molecular Dynamics

Laser cooling (2D/3D MOT)

Laser and fiber optics

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Electronics (AOM drivers/ DIO)

Single Atom Trapping/Imaging

Coil Machining/Winding

Software Package Development

Strontium Tweezer Experimer

Will Lab, Columbia

30

Strontium-88 (Bosonic)

• MOT Cooling Scheme

Rydberg Scheme

Laser Source: 461nm (Broad Cooling)

Laser Source: Repumpers

Laser Source: 689 nm (Narrow-line Cooling)

Strontium 3D MOT

e

-TOPE

Will Lab, Columbia

Strontium in Optical Dipole Trap

Tweezer Array

Will Lab, Columbia

Metasurface Tweezer Array

COLUMBIA UNIVERSITY IN THE CITY OF NEW YOKK

Contents

Atom Rearranging

Graph Theory, Algorithm Design

Laser Multiplexing System

Front-end, Back-end

Computational Mechanics

Machine Learning, Parallel computing, Multiphysics Simulation, Bayesian Optimization

Quantum Walk

Quantum Information Theory

Atom Rearranging

Atom Rearranging – As a linear sum assignment problem

- Goal: Finding the min number of moves to form compact array
- Bipartite Matching: Minimum cost for each atom to travel to target

Jonker-Volgenant or Hungarian algorithm

Pathfinding: Shortest path on graph Dijkstra's algorithm

Non-collision: Reordering

COLUMBIA UNIVERSITY

Kai-Niklas Schymik, et al. " Enhanced atom-by-atom assembly of arbitrary tweezer arrays." Phys. Rev. A **102**, 063107 (2021).

Atom Rearranging: Moving Tweezer

Will Lab, Columbia

Atom Rearranging: Parallel Moving Tweezers

Atom Rearranging – As a Tetris Game

IN THE CITY OF NEW YORK

Parallel Rearranging:

- Sorting Row by row to ensure we can fill each target row
- Compress column by column

Shuai Wang, et al. "Overlapping Bose-Einstein condensates of Na 23 and Cs 133." arXiv:2210.10364 (2022).

Atom Rearranging: Algorithm Performance

IN THE CITY OF NEW YORK

Atom Rearranging: Gallery

Fig.1 (a) 20x20 Square lattice (b) Quasi-lattice with 216 target trap sites

Atom Rearranging: User Interface

COLUMBIA UNIVERSITY

Contents

Atom Rearranging

Graph Theory, Algorithm Design

Laser Multiplexing System

Front-end, Back-end

Computational Mechanics

Machine Learning, Parallel computing, Multiphysics Simulation, Bayesian Optimization

Quantum Walk

Quantum Information Theory

The Galvo System - Hardware

IN THE CITY OF NEW YORK

Wavemeter Display

PID Control Panel

Galvo Control Panel

	Sweep values Calibr	JIStant values		
Update		lue (V): 0		
2.44 V	1040			
-0.94 V	707			
0.46 V	689			
-0.35 V	679			
0.0 V	461 (Master)			
0.0 V	461 (Injection 1)			
1.292 V	461 (3D-MOT)			
0.0 V	annel 8 Reserved			
0.0	Reserved	nannel 8		

Laser Multiplexing System- Gallery

Fig.1 Blue MOT and required lasers

	Constant Values Sweep Values Calibration				
	Value (V): 0		Update		
689 mm 679 mm 461 mm	Channel 1	10-40	2.41 V		
Engage Stop Set	Channel 2	707	-0.94 V		
want value: 422013 602 GHz	Channel 3	689	0,46 V		
ITerit value. 423913.002 GHZ	Channel 4	679	-0.35 V		
913.590	Channel 5	461 (Master)	0.0 V		
	Channel 6	461 (Injection 1)	1 292 V		
rrent voltage: 0.050 V	Channel 7	Reserved	0.0 V		
C channel: 0 Voltage min: -5.00 + max: 5.00 +	Channel 8	READITES			
		Quit			
rrent kP: -0.100000					
10111 H . 0110 -					
				- N M M A Text Sectors -	
rent kl: -0.100000				Control Panels For the Multiplexing care system	
• • •				Menu	
				TT For	
rent kD: 0.000000				Wavemeter Display	
ent KD. e.eee				Onlys Danal	
0000				Gaivo Parlei	
	4			PID control Panel	
				Open All	
				► Start	

Fig.2 Software Suite

Contents

Atom Rearranging

Graph Theory, Algorithm Design

Laser Multiplexing System

Front-end, Back-end

Computational Mechanics

Machine Learning, Parallel computing, Multiphysics Simulation, Bayesian Optimization

Quantum Walk

Quantum Information Theory

Computational Mechanics: Workflow

Implemented Methods

- Image classification: VGG16/19 (Simonyan etal. 2015)
- Material image generation: Generative Adversarial Neural Networks (GANs)
 - GAN (IJ Goodfellow 2014)
 - CGAN (M Mirza etal. 2014)
 - WGAN series (M Arjovsky etal. 2017)
 - StyleGAN (Tero Karras etal. 2019)
- Finite element method (COMSOL Multiphysics)
 - COMSOL Multiphysics via MATLAB
- Molecular Engineering
 - LAMMPS
 - High Performance Computing: GCP, AWS

Gallery

Table 5: The predicting accuracy of VGG19/Xception on sample dataset.

Property	Description	Random		Chiral		
	Description	Accuracy	R^2	Accuracy	R^2	
Ex	Young's modulus in x direction	98.82	0.997	99.04	0.987	
Ey	Young's modulus in y direction	99.24	0.999	99.10	0.989	
v_{xy}	Poisson'a ratio in x direction	98.63	0.671	93.67	0.999	
v_{ux}	Poisson'a ratio in y direction	98.13	0.675	85.94	0.999	
\check{B}	Bulk modulus	98.63	0.997	98.50	0.997	
G_s	Simple shear modulus	99.24	0.999	98.64	0.991	
G_p	Pure shear modulus	98.96	0.998	84.02	0.773	

Fig.1 VGG Network Performance

Fig.2 Computational Molecular Dynamics

Fig.3 Finite Element Method

Con... - C ×

Fig5. Deploy Application

Contents

Atom Rearranging

Graph Theory, Algorithm Design

Laser Multiplexing System

Front-end, Back-end

Computational Mechanics

Machine Learning, Parallel computing, Multiphysics Simulation, Bayesian Optimization

3

Quantum Walk

Quantum Information Theory

Quantum Walk: Possible Formulations of Quantum Simulators

"Quantum Cellular Automata/Quantum Lattice Gases", Mayer, J. Stat. Phys., 1996

"Exploring topological phases with quantum walks", Kitagawa etal., PRA, 2010

Quantum Walk: Our Model (under preparation)

(b) The spreading of walkers in real space of a two particle quantum walk in our model. A favorable candidate in spatial search.

$$\begin{aligned} \mathcal{H}(\theta,k) \propto \begin{pmatrix} \omega(\theta,k) - i \ln \eta(\theta,k)^{1/2} & 0 \\ 0 & -\omega(\theta,k) - i \ln \eta(\theta,k)^{1/2} \end{pmatrix} \\ \widetilde{\Psi}_{R}(k,t) &= \sqrt{\frac{\eta(\theta,k)^{t}}{2\pi}} \Big(i \cos \omega t + v(\theta,k) \sin(\omega t) + i e^{i\delta(\theta,k)} \sqrt{1 - (v(\theta,k))^{2}} \sin(\omega t) \Big) \\ \widetilde{\Psi}_{L}(k,t) &= \sqrt{\frac{\eta(\theta,k)^{t}}{2\pi}} \Big(\cos \omega t + i v(\theta,k) \sin(\omega t) - e^{-i\delta(\theta,k)} \sqrt{1 - (v(\theta,k))^{2}} \sin(\omega t) \Big) \end{aligned}$$

(c) We are arguing that it can also be a strong candidate of quantum simulator in exploring topological effects.

Tetrahedral MOT – Rb87

Single-laser, one beam, tetrahedral magneto-optical trap

Matthieu Vangeleyn, Paul F. Griffin, Erling Riis, Aidan S. Arnold Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, UK

